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Heteroclinic computing offers a novel paradigm for universal computation by collective system

dynamics. In such a paradigm, input signals are encoded as complex periodic orbits approaching

specific sequences of saddle states. Without inputs, the relevant states together with the heteroclinic

connections between them form a network of states—the heteroclinic network. Systems of pulse-

coupled oscillators or spiking neurons naturally exhibit such heteroclinic networks of saddles,

thereby providing a substrate for general analog computations. Several challenges need to be

resolved before it becomes possible to effectively realize heteroclinic computing in hardware. The

time scales on which computations are performed crucially depend on the switching times between

saddles, which in turn are jointly controlled by the system’s intrinsic dynamics and the level of

external and measurement noise. The nonlinear dynamics of pulse-coupled systems often strongly

deviate from that of time-continuously coupled (e.g., phase-coupled) systems. The factors impacting

switching times in pulse-coupled systems are still not well understood. Here we systematically

investigate switching times in dependence of the levels of noise and intrinsic dissipation in the sys-

tem. We specifically reveal how local responses to pulses coact with external noise. Our findings

confirm that, like in time-continuous phase-coupled systems, piecewise-continuous pulse-coupled

systems exhibit switching times that transiently increase exponentially with the number of switches

up to some order of magnitude set by the noise level. Complementarily, we show that switching

times may constitute a good predictor for the computation reliability, indicating how often an input

signal must be reiterated. By characterizing switching times between two saddles in conjunction with

the reliability of a computation, our results provide a first step beyond the coding of input signal iden-

tities toward a complementary coding for the intensity of those signals. The results offer insights on

how future heteroclinic computing systems may operate under natural, and thus noisy, conditions.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977552]

Standard paradigms of digital computation use collec-

tions of zero–one (or yes–no) bits to represent inputs,

intermediate states of a computation as well as outputs of

a computational system. Whereas such a system of N digi-

tal bits can represent an exponential number of 2N states,

it is not robust to any errors: each single bit flip moves

the system to another state that does not reflect the

desired one. Alternative concepts developed for “natural”

dynamical systems, often of time-continuously coupled

units with continuous state variables, typically do exhibit

some robustness but often are limited to represent only a

linear fraction aN of states. Recent progress showed that

heteroclinic computing—a novel type of computation by

bio-inspired dynamical systems—exhibits both, a certain

degree of robustness to inexact inputs and an almost

exponential (N�c expðbNÞ) scaling of the number of rep-

resented states. Heteroclinic computation has been dem-

onstrated to be capable of performing universal

computation in the sense that all digital functions can be

represented in principle. However, the demonstration

was focused on an idealized system setting where the

reception of exchanged signals between units experiences

no dissipation and there was no noise perpetually adding

errors in time. In this article, we systematically study the

joint influence of such processing dissipation and noise in

systems of pulse-coupled oscillators, akin to coupled neu-

rons. We show that computational times are bounded by

noise levels (as was known for smoothly coupled systems)

and that the noise ultimately overrides dissipation, setting

a natural time scale for typical computations.

I. INTRODUCTION

Networks of coupled oscillators can exhibit a large vari-

ety of dynamical regimes, e.g., synchronous and chaotic

regimes. Due to this variety, such systems have been used to

model and design computation in natural1–7 and artificial8–11

systems. In particular, recent works on heteroclinic networks

have shown interesting mathematical12–19 and computational

properties, including universal computation and an encoding

capacity that increases exponentially with system size.9,11

The fundamental structures underlying heteroclinic
computing are saddle states in state space with heteroclinic

connections between them: Saddles are invariant sets, in the

simplest example fixed points, exhibiting both stable anda)F. S. Neves and M. Voit contributed equally to this work.
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unstable manifolds, i.e., “directions” in state space along

which small perturbations from a saddle grow or shrink,

respectively. If an unstable manifold of one saddle A is con-

tained in the stable manifold of a second saddle B, these two

saddles are said to be connected by a heteroclinic connection,

here denoted A ! B. Sufficiently small perturbations away

from A may then induce a switch of the system towards B. A

closed sequence of such saddles linked by heteroclinic connec-

tions is called a heteroclinic cycle, e.g., A ! B ! C ! A.

Systems of globally coupled oscillators may exhibit many sad-

dles and many more heteroclinic connections forming a hetero-
clinic network, a complex network of saddle states that

typically offers two or more options to switch from every sad-

dle, i.e., for instance A! B or A! B0 with B 6¼ B0. In the par-

adigm of heteroclinic computing, information is encoded either

as switching events between saddles8,15 or as cyclic sequences

of such events,11 i.e., complex periodic orbits in state space.

Symmetrical systems composed of coupled oscillators

naturally exhibit heteroclinic networks. The saddles compos-

ing such networks are, by themselves, periodic orbits exhib-

iting poly-synchrony where subsets (clusters) of oscillators

synchronize to exhibit (nearly) identical dynamics. The

cyclic dynamics traced out by trajectories in state space

under a sequence of suitable periodic perturbations10 or due

to temporarily fixed, small symmetry-breaking input sig-

nals11 are thus complex periodic orbits created through two

periodicities: that of the periodic saddle orbits and the peri-

odic sequence of switchings between different saddle orbits.

Due to permutation symmetry, typically all saddle states

forming the heteroclinic network are isomorphic and exhibit

the same local and global stability properties, in particular,

the same number of oscillators per cluster, the same stability

eigenvalues as well as the same type and number of hetero-

clinic connections towards and away from them. What dif-

ferentiates each individual saddle state is exclusively the

identity of the oscillators composing each cluster. Under

such symmetry conditions, switching transitions between

saddles preserve the state symmetry class.

To better understand how computations are actually per-

formed, consider a simple example of a small network of

N¼ 3 oscillators with three interconnected saddle orbits (see

Figure 1). Each exhibits permutation symmetry S2� S1, i.e.,

all combinations of one cluster of two synchronized oscilla-

tors and one singleton not synchronized to the other two

(More details of model settings are explained below; how-

ever, these details are not relevant for the characteristic heter-

oclinic dynamics illustrated now). Let those saddle states be

denoted A ¼ ða; a; bÞ; B ¼ ða; b; aÞ, and C ¼ ðb; a; aÞ. Here,

the position of the label in the vector is the oscillator index, a
is the label for the cluster, and b the label for the singleton. In

this system, the cluster is unstable to desynchronizing its two

oscillators and the resulting heteroclinic network is connected

all-to-all. Furthermore, saddle switches follow a simple rule:

without loss of generality, starting from A ¼ ða; a; bÞ a gen-

eral perturbation (D1, D2, D3) either yields the transition

A ¼ ða; a; bÞ ! ðb; a; aÞ ¼ B; (1)

for D1>D2, independent of D3, or

A ¼ ða; a; bÞ ! ða; b; aÞ ¼ C; (2)

for D1<D2, also independent of D3. By permuting the oscil-

lator indices we find the other four possible switching

options. Thus, observing any one such switching process

between two saddles tells us which of the two inputs to the

two oscillators in the clusters was the larger one. Such a sys-

tem thereby computes the rank order of the perturbation vec-

tor projected onto the (unstable) cluster. If the perturbation

signals comes in form of a continuing input (or consists of

small, sufficiently many perturbations with identical rank

order), for D1>D2>D3, the orbit

A!D1>D2
B!D2>D3

C!D1>D3
B (3)

is established. After transiently leaving the state A, the

dynamics continuously switches between the B and C states

(Figure 1). This two-states orbit is complex in that it is an

orbit alternating between B and C, where both B and C are

already periodic. Observing the specific cycle (complex peri-

odic orbit) B ! C ! B… thus tells a partial rank order of

the input vector: it tells that D1 and D2 are both larger than

D3. The collective dynamics of the system, as steered by the

input perturbations, thus constitutes a k-winners-take-all

computation (with N¼ 3 and k¼ 2). We recently demon-

strated theoretically11 that this principle of heteroclinic com-
puting is universal and in principle scalable. For instance, a

system of N¼ 100 coupled oscillators exhibits a k-winners-

takes-all computation with k¼ 20, with of the order of 1065

saddles and 1020 distinguishable cycles of saddles. The sys-

tem can thus process 1020 qualitatively different inputs (at

identical parameters) and thus, in principle, perform as many

different individual computations.

As the switching dynamics are decisive of the overall

heteroclinic dynamics and thus essential for any type of het-

eroclinic computing, switching times play an important role

in the overall encoding and decoding processes. Switching

times after instantaneous perturbations20 have been studied

for time-continuously coupled systems. Pulse-coupled

FIG. 1. Heteroclinic computing in a small network of states. In this example,

a system composed of three oscillators exhibit three saddles connected via

six heteroclinic connections. Dark circles represent saddles; large gray

circles represent the saddle vicinities; and arrows represent heteroclinic con-

nections. In real systems that are noisy and exhibit heterogeneities and

imperfections, switching processes spontaneously arise between neighbour-

hoods of saddles, cf. Section III. We denote these saddles as A¼ (a, a, b),

B¼ (a, b, a), and C¼ (b, a, a), where the position of the label in the vector

is the oscillator index, a is the label for a two-oscillator cluster and b the

label for a singleton. Saddle switches follow rules (1) and (2) (and their per-

mutations). The orange set of arrows highlight the “complex” periodic orbit

B¼ (b, a, a) ! C¼ (a, b, a) ! B¼ (b, a, a) triggered by a persistent

D1>D2>D3 perturbation, where the sub index indicate the oscillator being

perturbed.
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oscillator systems enable analytic access to periodic and

even non-periodic dynamics and thereby improved qualita-

tive and quantitative insights useful for understanding

options and properties of heteroclinic computing. Yet, most

results, including those for switching times do not trivially

transfer to pulse-coupled and other hybrid systems from sys-

tems coupled continuously in time. Indeed, pulse-coupled

systems are known to exhibit a number of non-standard

dynamical properties, including unstable Milnor attractors

and local stability operators that are non-linear,15,16,21,22 a

breakdown of order preservation in symmetric systems23 and

non-standard bifurcations.24,25 How noise sources impact the

switching dynamics and in particular, the switching times is

not well understood for pulse-coupled systems.

In this article, we show how providing independent

noise to all oscillators in a system exhibiting heteroclinic

networks provides an upper bound for the switching times

between saddles. This work is divided in four main sections:

we first introduce (in Section II) the model of coupled oscil-

lators and briefly review specific previous results; in Section

III, we present working definitions of switchings and switch-

ing times; in Section IV, we characterize the switching

dynamics induced by noise and the combined effects of par-

tial reset and noise. Finally, we briefly discuss the results and

their impact in neural computing (Section V).

II. PULSE-COUPLED OSCILLATORS AND PARTIAL
RESETS

Consider all-to-all connected networks of pulse-coupled

oscillators (no self-connections). The unit dynamics is a

modified version of the model introduced in Ref. 1, now

incorporating partial resets25,26 and delays.27,28 More specifi-

cally, consider an Integrate-and-fire neuronal model, where a

voltage-like state variable x follows the dynamical rule:

dxi

dt
¼ f xið Þ þ

XN

j¼1

X

tj;l2Pj

ed t� tj;l � sð Þ; 0 � xi < xh;

i 2 1;…;Nf g; (4)

where i is the neuron index, N is the number of neurons,

xi¼ xh is the firing threshold, and f(xi) is a positive function,

i.e., f(xi)> 0. The summation in Equation (4) is the contribu-

tion of all pulses arriving from the other N � 1 neurons to

neuron i, where s represents the connection delays, e the con-

nection weight, and Pj is the set of all times of pulses sent by

neuron j. Whenever the upper threshold at xh is crossed,

either by reaching the threshold or receiving incoming

pulses, the neuron is reset to a phase

xiðtþÞ ¼ c � ðxiðtÞ þ me� xhÞ; (5)

and a pulse is sent to all other neurons. Here, tþ denotes the

time immediately after t, m is the number of arriving pulses

at time t, and c 2 [0, 1] is a partial reset constant that defines

the fraction of supra-threshold voltage kept after reset. The

partial reset models memory effects of signals received

before the most recent reset.25 Mathematically, c 6¼ 0 implies

an invertible flow, see Ref. 26.

Because the voltage-like dynamics presented above is

monotonic between events, it can be mapped to a simple

phase variable /iðtÞ 2 ½0; 1� such that

d/i

dt
¼ 1 with /i tþð Þ ! 0 if /i tð Þ ¼ 1: (6)

Here the time of one free oscillation is rescaled to one,

/iðtÞ ! 1 as xi(t) ! xh and /iðtÞ ! 0 as xi(t) ! 0. In this

phase representation, to compute the contribution of incom-

ing pulses, the phase is first transformed back to the voltage

variable, the effect of all pulses are computed, and, after

that, transformed again into its phase representation. Let the

map be denoted xiðtÞ ¼ Uð/iðtÞÞ. The resulting phase imme-

diately after the arrival of incoming pulses is either

/iðtþÞ ¼ U�1ðUð/iðtÞÞ þ meÞ; (7)

if the resulting phase is sub-threshold, or

/iðtþÞ ¼ U�1ðc � ðUð/iðtÞÞ þ me� xhÞÞ; (8)

if the resulting phase is supra-threshold. Furthermore, this

system of equations is integrable between pulse events and,

thereby, yields an analytical event based description of its

time evolution. Throughout this work, we define a unit of

time as one oscillation of an uncoupled oscillator.

To be concrete, we choose a well studied oscillator

model1 with

U /ið Þ ¼
1

b
ln 1þ eb � 1ð Þ � /i

� �
; (9)

where b is a constant controlling the concavity of xi. For the

sake of simplicity and clarity, we here study a network com-

posed of four oscillators exhibiting two interconnected sad-

dles. Notice that in this work the size of the network of states

is irrelevant, because we are interested in the timings during

switching dynamics and not the saddles identities. We here

consider a simple and small example system of N¼ 4 oscilla-

tors and illustrate that the results are qualitatively the same

for a system of N¼ 100 oscillators in Appendix. For parame-

ters b¼ 4.2, s¼ 0.02, e¼ 0.23, c¼ 0, and threshold xh¼ 1,

this four-oscillator system exhibits two unstable attractors

linked by two heteroclinic connections, see Figure 2(a). More

specifically, two clusters of two oscillators perfectly synchro-

nize. One cluster is unstable, whereas the other is stable.25 For

c¼ 0, upon a small perturbation to an initial saddle state, the

unstable cluster transiently desynchronizes and resynchro-

nizes along the heteroclinic orbit. After this transition, the ele-

ments in each cluster are still the same, but their stability is

interchanged, marking the arrival at the other saddle state.

The final state is identical to the initial one after a proper per-

mutation of the units’ indices.

It was shown in Ref. 24 that increasing c to values above

0 yields local invertibility because the supra-threshold frac-

tion in reception events is not erased, see Equation (6). Thus,

we have a bifurcation at c¼ 0, in which the saddle periodic

orbits cannot be perfectly reached anymore in finite time

because perfect resynchronization is prevented. Instead, the

system exhibits spiral orbits approaching the heteroclinic
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cycle, yielding an ongoing switching process. Indeed, the

switching times between saddles (roughly the time spent in

each plateau in Figure 2(a)) after a one-time perturbation

grow exponentially with the number of switchings, see

Figure 2(b) and Refs. 15, 16, and 25 for more details.

III. SWITCHING TIMES BETWEEN SADDLE STATES

In this work, a precise working definition of “switching”

is required, even though what is meant by “switching” seems

to be intuitively clear. Naively, one may define a switching

event as the trajectory along a heteroclinic connection from

one saddle to another. Thus, a switch would be a transient

process with seemingly well-defined start and end points.

This definition does not apply for systems with partial resets

or under noise because these conditions prevent the system

from precisely reaching the saddles (cf. Figure 1). To charac-

terize the switching times under those conditions, we pro-

pose a less restrictive definition, in which the saddles do not

need to be precisely reached, but only a certain vicinity of

the saddle orbits. More specifically, we consider that a saddle

has been “reached” at a time tk if the (so far) stable cluster

loses stability and begins to consistently desynchronize. To

compute the tk values we actually observe the system’s event

sequence (sending and receiving pulses). As mentioned in

Section II after a perturbation the oscillators will not per-

fectly resynchronize in finite time for c> 0. Nevertheless,

the overall stability properties close to the saddles for

0< c< 1 are still similar to the case c¼ 0. That is, one

quasi-synchronized cluster tends to resynchronize after per-

turbations while the other tends to desynchronize, until a

new saddle is “reached.” Figure 2(a) shows the two-clusters

dynamics, where the elements in each cluster are virtually

synchronized except for the short period between plateaus.

At these times, a large difference in the phases of the oscilla-

tors in the unstable cluster appears transiently. We here

choose two consecutive changes in cluster stability, from sta-

ble to unstable, as our reference points to calculate the

switching times, i.e., the times in which the phase difference

in a cluster starts to consistently increase.

Having defined the {tk} as the change of stability times,

we here denote by fk the switching time between arriving in

the vicinity of a saddle, leaving it again, and arriving in the

next saddle’s vicinity. Therefore, given two consecutive

switchings we have

fk :¼ tkþ1 � tk; (10)

where tk is the time of the k-th departure event. We are also

interested in the average switching time

�f :¼ 1

L

XL

k¼1

tkþ1 � tk; (11)

where L is the number of switches, given different noise lev-

els and fractions of partial resets.

IV. NETWORK DYNAMICS SUBJECT TO NOISE

This section deals with the aspects of noise in networks

of pulse-coupled oscillators. We substantiate the importance

of noise in systems with discontinuous dynamics and define

the type of noise used throughout this work. Based on these

fundamentals, we characterize how noise promotes sustained

switchings between two saddles in a N¼ 4 network and later

the combined effect of noise and partial resets.

A. Noise induced switching

In Section II we showed that the dynamics of delta-

pulse-coupled oscillators have a discrete event sequence

description, providing a precise and fast alternative to

numerical integration. To keep these advantages, we approx-

imate a continuous Gaussian noise source as the sum of two

high frequency Poisson distributed delta-pulse-trains with

very small, fixed amplitudes, one with positive pulses and

one with negative pulses. In this way, noise with zero mean

contribution can be added to each neuron as the sum of two

independent pulse trains on top of the pulses exchanged

between oscillators (network pulses) and, thus, their contri-

bution is simply computed via Equations (7) and (8). In the

unlikely event of a negative pulse, arriving just after a reset

event, producing a slightly negative phase, the phase is

instead set to zero. Furthermore, for each oscillator i, the

FIG. 2. Switchings induced by instantaneous perturbations with amplitudes 10�5 and their switching times. (a) For c¼ 0.1, all phases are plotted each time oscilla-

tor i¼ 1 is reset. Notice the ever increasing plateaus after the fast part of switchings; (b) the switching times after the perturbation for three values of c. The switch-

ing times increase exponentially with the number of switches.24 Small differences in the switching times ranking order during the first three switches are caused

by small differences in the times in which the perturbations were applied in each case.
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noise generated in an interval D, denoted as gi(t, tþD), is

given by a simple summation

giðt; tþ DÞ ¼
X

fj:t<iij<tþDg
sijnij; (12)

where iij is the time of the j-th “noise pulse” arriving at the

i-th oscillator (Poissonian pulse train), nij is a fixed pulse

amplitude (nij� �), and sij is a random variable that assumes

either 1 or �1 with the same probability, to keep the mean of

the generated noise at zero. The introduction of the sign sij

means that, in fact, we have two Poisson processes with the

same frequency (half of the original) and same variance, but

different signs. Altogether, the final distribution of times

between spikes approximates a Gaussian centered at zero

with the same variance as the originals, because the sum of

the variances is compensated by the drop in half in the indi-

vidual variances due to the decrease in individual frequen-

cies. In practice, algorithmically, {iij} is a large number of

new pulse events with low amplitude, with their time differ-

ences drawn from

ii jþ1ð Þ � iij ¼ �
log 1� uð Þ

f
; (13)

where u is a random number drawn from a uniform distribu-

tion between 0 and 1 and f is a chosen frequency for the

Poisson process. Therefore, our noise level parameter is nei-

ther the pulse strength nor the frequency, but how they com-

bine to provide the noise standard deviation, given by

ri ¼ jnijj
ffiffiffi
fi

p
: (14)

In this work, without loss of generality, we fixed f at 100

pulses per a neuron free oscillation and we vary nij in order

to vary ri.

To show how even a small noise level can strongly influ-

ence the dynamics for small c (typical case), we now

describe how a small phase shift affects the overall dynam-

ics. For simplicity, we consider the limiting case c¼ 0.

Starting from fully synchronized clusters, pulses from a clus-

ter are sent at the same instant and, thus, arrive at the same

time. If the pulses cause a supra-threshold event, the surplus

of phase is lost, due to the reset rule (for small c it is almost

erased). On the other hand, if a small perturbation is present,

one pulse may be able to cause a reset, and the second pulse

would be computed in full. As a result, the difference in

phases is rather different in the two cases, after the pulses

arrived. Even an arbitrarily small perturbation can thus cause

a large change in dynamics.

Similar to the switchings sustained by partial reset, noise

also leads to a persistent switching process, because the sad-

dles are unstable, see Figure 3. The following results concern

the switching times for a network with N¼ 4 and c¼ 0, to

study the switching times independently of partial resets

effects. We find that the smaller the noise strength, the larger

are the mean switching times and their variances (Figure 4).

This happens because, at small noise values, the system

spends a larger time at the slow dynamics close to the saddle

point, and thus, there is a larger probability that a switching

will occur due to low probability events with a larger magni-

tude. As the noise strength increases, the system departs

shortly after approaching the vicinity of a saddle, and thus its

variance is small. Furthermore, we find that the dependence

of �fðrÞ on r, as known for smooth dynamical systems,29 is

logarithmical

�fðrÞ / lnðrÞ; (15)

as shown in Figure 4(b). Even though this scaling was already

shown for networks of phase coupled oscillators,8,20,30,31 its

emergence in the context of pulse-coupled systems was not

established.

B. Combined effects of noise and partial reset (N 5 4)

We found that the resulting dynamics from the com-

bined effects of noise and partial reset is roughly a combina-

tion of the separate effects. Starting from a relatively large

perturbation (10�5), we first observe a continuous increase in

switching times, consistent with the partial reset dynamics.

As the switching times approach the times predicted by the

noise induced switchings, it stagnates, because the amplitude

of the noise contribution has the same order of magnitude as

the residual phase differences given by the partial reset

events. In Figure 5 we provide an example of the time evolu-

tion in those conditions and the switching times for the same

initial perturbation but for different noise levels. Small varia-

tion at the upper boundary is caused by random fluctuations

in the generated noise.

FIG. 3. Switchings induced by noise

and their switching times. (a) For

r¼ 10�50, all phases are plotted each

time oscillator i¼ 1 is reset. The pla-

teaus exhibit approximately the same

length; (b) for three values of r, the

switching times for the first 20 switches

are shown. Switching times decrease

with the strength of the noise.
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C. Combined effects of noise and partial reset (N 5 5)

How may noise affect computations by altering the

switching times as well as the switching directions after one

instantaneous perturbation signal? Because the system studies

so far exhibit only one switching direction per saddle, to the

only other saddle available in a network of states composed

of two saddles, we here study a slightly larger system com-

posed of N¼ 5 Integrate-and-Fire oscillators. Specifically, we

choose, for Equation (4), f ðxiÞ ¼ ðI � xiÞ, I¼ 1.04, s¼ 0.49

(already rescaled for /), and �¼ 0.025. For these parameters,

this system exhibits thirty interconnected saddles with two

incoming directions and two outgoing directions each (see

Refs. 10 and 11). Furthermore, switching times for this new

system increase much more rapidly than for the system of

N¼ 4 units studied before. To compensate in part for this

increase of partial reset events per switch, we here set

c¼ 0.7, preserving the signal for a while longer, and focus

only in the first five switching events.

The results shown in Figure 6(a) conform with the ones

presented in Sections III and IV B, see in particular Figures

2(b), 3(b) and 5(b) i.e., after an instantaneous perturbation

signal, the switching times between saddles increase expo-

nentially up to some level set by the noise. The main differ-

ence is that in this example there are two exit directions per

saddle, i.e., the trajectory may approach one out of two possi-

ble saddles right after leaving the neighborhood of one sad-

dle. In this particular example, if the system is driven by

zero-centered Gaussian noise only, the chance of following

any one of these paths is 50%.10 If input signals are applied

in addition to the noise, these signals may generate switches

with deterministic directions, cf. Ref. 11. Yet due to dissipa-

tion (set by c) and noise, the influence of one instantaneous

perturbation decreases with each supra-threshold input pulse,

triggering a reset. Simultaneously, the switching times will

exponentially increase. Thus, to evaluate the computational

reliability in the presence of noise, we numerically determine

the fraction of switching events that do not go into the direc-

tion predicted by the same signal in the absence of noise. We

define this fraction to be the error probability Perr(r). Figure

6(b) illustrates estimations of the error probability for a

sequence of five switches for three different noise levels after

the same instantaneous perturbation. Qualitatively, the error

probability stays essentially zero as long as the switching

FIG. 5. Noise constrains switching times. Switchings in a N¼ 4 system subject to partial reset and concurrent noise (c¼ 0.1 and single signal amplitude of

10�5 in both panels). (a) The phases of all oscillators are plotted whenever oscillator i¼ 1 is reset. The switchings are promoted by partial resets after an initial

perturbation; the switching time interval increases until a value close to the mean �fðrÞ determined by the noise strength, here set to r¼ 10�75. (b) Switching

times depending on the number of switchings for different noise strengths. The three curves are qualitatively the same, with the approximate maximum fk value

depending on r. Early deviations from the noiseless case are caused, with low probability, by random fluctuations of the realized noise value.

FIG. 4. Dependence of switching times f on the noise strength r. (a) Example of distribution of switching times for r¼ 10�20 and r¼ 10�30 after, respec-

tively, 1270 and 846 switches. Both exhibit a relatively small variance and are roughly distributed in a one unit range; (b) dependence of the mean switching

times and the switching time variance on r. Notice that the variance increases as the noise strength decreases.
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times are below those set by the noise, whereas it becomes

substantially large (30% and more in the sample estimates

shown in Figure 6(b)) once the switching times are of the

order set by the noise. These results shows how often a signal

must be reiterated to be properly computed and thus indicate

how low the frequency of an spike train signal (signal repeti-

tion) can be to still enable reliable computations at a given

noise level. We note that in the limit of high frequency inputs

with sufficiently small amplitudes, the input signal sequence

resembles a constant current, which do not induce exponen-

tially growing switching times, but a fixed value11 instead.

V. SUMMARY AND CONCLUSIONS

How does noise impact the dynamics along networks of

states and thus heteroclinic computing11? In systems of

pulse-coupled oscillators with partial resets, we systemati-

cally studied how noise changes the switching times.

Whereas initially the switching times increase exponentially

due to the local instability of the saddles, in the long term,

they saturate as they are driven by the noise.

For simplicity and numerical tractability in a reasonable

time, we here considered systems of N¼ 4 pulse-coupled

oscillators. As argued above, the results do not qualitatively

depend on system size, because we are interested in the sad-

dle dynamics (How does a trajectory pass one saddle?) and

not the saddle identity (Which sequence of saddles does the

trajectory pass?). This small system exhibits a network of

two saddles and already captures the necessary switching

aspects (switching times).

We first briefly reviewed results on a bifurcation occur-

ring due to partial resets,24 which leads to sustained switch-

ing between the neighborhoods of saddle periodic orbits. As

specific new results, we showed that switching times grow

exponentially, because deviations of the trajectory from the

saddles decrease at every cycle by some factor. Thus, the tra-

jectory more and more closely approaches the heteroclinic

cycle and, thereby, slows the dynamics close to the saddle

orbits. Second, we showed that similar switchings occur due

to noise without partial resets. More specifically, we showed

that the mean switching times scale logarithmically with the

noise variance (mean zero), consistent with numerical

observations8,20,31 and analytic estimates29 for continuous-

time systems. Particularly, our results do not trivially follow

from those for continuous-time systems, because the dynam-

ics of systems of pulse-coupled oscillator are not continuous

but of (discrete-continuous) hybrid type. Third, we investi-

gated the dynamics simultaneously under the influence of

noise and partial resets. We demonstrated how the switching

times induced by noise may override the ones induced by

partial resets and thus constrain them. Furthermore, we stud-

ied a system of N¼ 5 oscillators (exhibiting a heteroclinic

network of 30 saddles10,11 and at each saddle two options for

subsequent saddles) and show that computational reliability

switches from faithful (close to 0% error probability) to

unfaithful (error probability close to chance level). This

result provides a lower bound on how frequently an input

signal must be presented again to maintain a reliable compu-

tation or, equivalently, how low the frequency of a spike

train signal can be to still be properly computed. A simple

but important fact is that each instantaneous perturbation sig-

nal applied yields some head time during which noise can

act on the system without being capable of blurring the com-

putation in any substantial way.

In summary, our results suggest that systems of pulse-

coupled oscillators exhibit characteristic switching times

available for the dynamics near networks of saddle states

and thus should, in principle, enable heteroclinic computing,

cf. Ref. 11 in noisy pulse-coupled systems with dissipation.

In particular, these results indicate that noise may constrain a

computation to a maximum time scale available for switch-

ings. Mathematically, it remains to be shown that the mecha-

nisms for this constraint are the same for both continuous

and pulse-coupled systems. If so, any engineered hetero-
clinic computing device may come, on the one hand with a

lower bound on the time interval to present a given instanta-

neous signal again, and on the other hand with an upper

bound guarantee for the times of completing a computation.

As heteroclinic computing constitutes a novel type of analog

computing by exploiting collective dynamics emerging in a

broad class of systems, our results provide hints about how

such systems operate under noisy conditions. The results

thus do not only offer theoretical insights about scaling

FIG. 6. Noise constrains switching times and switching error probability. In all simulations, the initial perturbation has amplitude of 10�4. Switchings in a

N¼ 5 system subject to partial reset and concurrent noise (c¼ 0.7 in both panels). (a) Switching times depending on the number of switchings for different

noise strengths. The three solid curves are qualitatively the same, with the approximate maximum fk value depending on r. The dashed line shows the switch-

ing times in the absence of noise growing exponentially. (b) The switching error probability (turn to the wrong saddle) is calculated for the three solid curves

in panel (a); average switching times and error probabilities are calculated as averages over 30 simulations.
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properties of systems’ dynamics, but may also open up ways

for hardware implementations of heteroclinic computing

interacting with the environment, including robotic applica-

tions, decision making in general, and short-term memory.

APPENDIX: HETEROCLINIC DYNAMICS: 100
OSCILLATORS’ NETWORK

We here present an example of a system composed

of N¼ 100 oscillators exhibiting heteroclinic dynamics. The

model is the same as introduced in the main text, Equation

(9), with U¼ 3, s¼ 0.15, and �¼ 0.2. Consistent with the

example in the main text, this system exhibits decreasing

switching times with increasing noise strengths. As shown in

Figure 7, the saddles are periodic orbits exhibiting five clus-

ters. Moreover, this saddle states have S21� S21� S21� S21

� S16 cluster permutation symmetry and are unstables only

to perturbations to one of the clusters. We here call such

cluster the “unstable cluster,” and the remaining clusters are

simply called “stable clusters.” The system also exhibits

symmetry preserving saddle switches. As shown in Figure 7,

after approaching a saddle state, a perturbation (noise) trig-

gers a saddle switch. In this process, the five oscillators in

the unstable cluster subject to the stronger perturbations

depart from the cluster and join the cluster originally com-

posed of 16 oscillators, forming a new stable 21 cluster; after

a transient, the remaining 16 oscillators from the originally

unstable cluster form a new stable cluster; and another 21

cluster losses stability after the relative phase differences

between cluster are dynamically rearranged. As show in Ref.

11, a persistent detuning perturbation to such systems pro-

vides a 20-winners-take-all out of a 100 detuning currents.
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